PROF. DR. M.M. B. EL SABBAH
AL-AZHAR UNIVERSITY
FACULTY OF SCIENCE
CHEMISTRY DEPARTMENT

2016
PRINCIPLES OF CORROSION

ELECTROCHEMICAL AND THERMODYNAMIC
PRINCIPLES OF CORROSION
1. Definition of corrosion.

2. Cost of corrosion.

3. Corrosion Cost Type

4. Classification of corrosion.

5. Expressions for corrosion rate.

7. Thermodynamic principles of corrosion.
1. Definition of corrosion (1/3)

The loss of useful properties of material as a result of chemical or electrochemical reaction with its environment.
The term corrosion is sometimes also applied to the degradation of plastics, concrete and wood, but generally refers to metals.
1. Definition of corrosion (3/3)

A Thermodynamic energy profile for metals and their compounds.
CC Technologies & NACE International study shows the cost of corrosion in the U.S.A. is $276 billion / year. Project funded by FHWA.
2. Cost of Corrosion (2/4)
Significance of Corrosion on Infrastructure
Utilities
At US $2.2 trillion, the annual cost of corrosion Worldwide is over 3% of the world's GDP.

Yet, governments and industries pay little attention to corrosion except in high-risk areas like aircraft and pipelines.

Now is the time for corrosion professionals to Join together to educate industry, governments, and the public.
2. Cost of Corrosion (4/4)

Now is the time to work together to harmonize Standards and practices around the world and to communicate and share corrosion mitigation technologies.

Now is the time to make a major impact to protect The environment, preserve resources, and protect our fellow human beings.
3. Corrosion Cost Type (1/3)

Cost of corrosion

Direct losses

Indirect losses
3. Corrosion Cost Type (2/3)

Direct losses

1. Inability to use otherwise desirable materials.
2. Over-design to allow for corrosion.
3. The cost of repair or replacement of the corroded component.
4. Cost of anti-corrosive painting or other protection methods.
3. **Corrosion Cost Type (3/3)**

Indirect losses

1. Contamination of the product.
2. Loss of valuable product from a container that corroded through.
3. Damage of equipment adjacent to that in which corrosion failure occurs.
4. Loss of product.
5. Safety, e.g., sudden failure of equipment may cause fire, explosion or release of toxic product.
4. Classification of Corrosion

1. Electrochemical corrosion
 - Separable anode/cathode type.
 - Interfacial anode/cathode type.
 - Inseparable anode/cathode type.

2. Chemical Corrosion
 - Which involves direct chemical reaction of metal with its environment.
4.1. Classification of Corrosion

- Corrosion may be classified in different ways
- Wet / Aqueous corrosion & Dry Corrosion
- Room Temperature/High Temperature Corrosion
Separable anode/cathode type.
Interfacial anode/cathode type.
Inseparable anode/cathode type.
5. Expressions for corrosion rate (1/2)

- The calculator uses the following equation to estimate the corrosion rate:

\[
R = \frac{K(m_b - m_a)}{A(\Delta t)\rho}
\]

where:
- \(R\) = penetration rate (mil/y or mm/y)
- \(m_b\) = mass before exposure (gram)
- \(m_a\) = mass after exposure (gram)
- \(A\) = total exposed surface area (in\(^2\) or mm\(^2\))
- \(\Delta t\) = total exposure time (hours)
- \(\rho\) = density (g/cm\(^3\)) The units are those most commonly used and are those
5. Expressions for corrosion rate (2/2)

Assumed for this calculator. The information required to use the calculator for this type of corrosion coupon is:

- Length (inch or millimeter)
- Width (inch or millimeter)
- Height (inch or millimeter)
- Diameter of bolt hole through coupon (inch or millimeter)
- Diameter of electrical isolation washers (inch or millimeter)
- Mass before exposure (gram)
- Mass after exposure (gram)
- Exposure time (hour)
- Density (gram/cm3)
CORROSION PRINCIPLES

Thermodynamic Principles

Metallurgical Principles

Physical and chemical Principles

Electrochemical Principles
ELECTROCHEMICAL AND THERMODYNAMIC PRINCIPLES OF CORROSION
Basic Corrosion Theory

Corrosion is an electrochemical reaction composed of two half cell reactions, an anodic reaction and a cathodic reaction. The anodic reaction releases electrons, while the cathodic reaction consumes electrons. There are three common cathodic reactions, oxygen reduction (fast), hydrogen evolution from neutral water (slow), and hydrogen evolution from acid (fast).
The Corrosion Cell (1/3)

- **Anodic reaction:**

 \[M \rightarrow M^{n+} + ne^- \]

- *M stands for a metal and n stands for the number of electrons that an atom of the metal will easily release.*

 - i.e. for iron and steel: \(\text{Fe} \rightarrow \text{Fe}^{2+} + 2e^- \)

- **Cathodic reactions:**

 - \(\text{O}_2 + 4 \text{H}^+ + 4e^- \rightarrow 2\text{H}_2\text{O} \) \((\text{oxygen reduction in acidic solution})\)

 - \(1/2 \text{O}_2 + \text{H}_2\text{O} + 2e^- \rightarrow 2 \text{OH}^- \) \((\text{oxygen reduction in neutral or basic solution})\)

 - \(2 \text{H}^+ + 2e^- \rightarrow \text{H}_2 \) \((\text{hydrogen evolution from acidic solution})\)

 - \(2 \text{H}_2\text{O} + 2e^- \rightarrow \text{H}_2 + 2 \text{OH}^- \) \((\text{hydrogen evolution from neutral water})\)

- Each half-cell reaction has an electrical potential, known as the half-cell electrode potential. The anodic reaction potential, \(E_a\), plus the cathodic reaction potential, \(E_c\), adds up to \(E\), the cell potential. If the overall cell potential is positive, the reaction will proceed spontaneously.
The Corrosion Cell (2/3)

The corrosion cell can be represented as follows:

\[
\begin{align*}
\text{Anode: } & \quad \text{Fe} \rightarrow \text{Fe}^{2+} + 2e^- \\
\text{Cathode: } & \quad 2\text{H}^+ + 2e^- \rightarrow \text{H}_2 \uparrow
\end{align*}
\]
The Corrosion Cell (3/3)

Types of Electrochemical corrosion cells

- Electrochemical Cells
 - Galvanic Cells
 - Concentration Cells
 - Electrolytic Cells
Galvanic Cell

\[(-)Zn / Zn^{2+}, SO_4^{2-}_{(\text{conc}_1)} \parallel Cu^{2+}, SO_4^{2-}_{(\text{conc}_2)} / Cu(+) \]

Zinc anode: \(Zn_{(s)} \rightarrow Zn^{2+} + 2e^- \)
Copper cathode: \(Cu^{2+} + 2e^- \rightarrow Cu_{(s)} \)
Galvanic Cell

<table>
<thead>
<tr>
<th>Anode</th>
<th>Cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation occurs</td>
<td>Reduction occurs</td>
</tr>
<tr>
<td>Electrons produced</td>
<td>Electrons are consumed</td>
</tr>
<tr>
<td>Anions migrate toward</td>
<td>Cations migrate toward</td>
</tr>
<tr>
<td>Has negative sign</td>
<td>Has positive sign</td>
</tr>
</tbody>
</table>
Galvanic Cell
Two dissimilar metals in contact

- Two metals in contact may be entirely different in composition, e.g. iron pipe carrying water is anodic to copper pipe.

- Galvanic Corrosion with example of Couple between Steel and Brass.
Different Heat Treatment

- Behavior of the metal depends on the type of heat treatment given, e.g. Tempered steel is anodic to annealed steel.

- Tempered: increase the hardness and strength of a metal by quenching or heat treatment.

- Annealed: heat of metal and then gradually cooling.
Scratches or Abrasion

- If a piece of metal is scratched or abraded, the scratched or the abraded area will be anodic to remaining portion.
Differential strain

- A strained area is usually anodic to an unstrained area.
Many alloys may consist of heterogeneous phases, which may have a potential difference. However, no general rule can be established. For example, in the case of Al-Cu alloy CuAl2 precipitate at the grain boundary is cathode to alpha matrix.
Different Grain Size

- Usually the smaller grains are anodic to large ones.
Surface condition

- Difference in surface condition may also create a potential difference. This explains why a new section of pipe when welded in old line becomes anodic and corrodes.
Differential curvature

- If the metal has a curved surface, the more highly convex surface is anodic to the less convex surface.
Concentration Cell

CaCl₂ salt bridge

0.2 L CuSO₄ 1M

0.2 L CuSO₄ 0.01M
Differential Composition of the Electrolyte

Example of this type of corrosion is:

- A section of pipe buried in clay soil is anodic to pipe section buried in loam-soil.
Temperature differential

- The two regions having a temperature difference may have different potential
If a structure is subjected to varying velocities of the electrolyte, the area of higher velocity will be cathodic.
Differential illumination

- The darker region well be anodic to the brighter ones.
Differential concentration of the electrolyte

- These are also known as salt concentration cells and has two identical electrodes each in contact with a solution of different concentration of the same electrolyte.

The area of the metal in contact with the more dilute solution is usually anodic and corrodes.
Differential Oxygen Concentration

- These are also known as differential aeration cells.
- The electrode in deaerated solution (solution with less oxygen) becomes anodic and corrodes.
Electrolytic Cells
Electrochemical Vs Electrolytic

<table>
<thead>
<tr>
<th>Electrodes</th>
<th>Electrochemical</th>
<th>Electrolytic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cathode</td>
<td>Site of reduction + charge</td>
<td>Site of reduction - charge</td>
</tr>
<tr>
<td>Anode</td>
<td>Site of oxidation - charge</td>
<td>Site of oxidation + charge</td>
</tr>
</tbody>
</table>

Ions

<table>
<thead>
<tr>
<th>Cations</th>
<th>Migrate to cathode</th>
<th>Migrate to cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anions</td>
<td>Migrate to anode</td>
<td>Migrate to anode</td>
</tr>
</tbody>
</table>

Electron flow

| Anode to cathode | Anode to cathode |

Voltage

| + voltage produces a voltage | - voltage requires a voltage source |

Spontaneity

| spontaneous | non spontaneous |
Stray-current corrosion of buried pipeline.
Thermodynamic Principles of corrosion
What is Thermodynamics?

Thermodynamics is the study of the effects of work, heat, and energy on a system. Thermodynamics is only concerned with large scale observations.

- Zeroth Law: Thermodynamic Equilibrium and Temperature
- First Law: Work, Heat, and Energy
- Second Law: Entropy
\(\Delta E, \Delta H, \Delta S, \Delta G, \Delta A \text{ and } \Delta \mu \)

\[
\Delta G = H - T \Delta S
\]

- **Free energy**: The total energy which can be utilized for work.
- **Enthalpy**: The heat content.
- **Entropy**: The unavailable energy of a substance due to the internal motion of the molecules.
The relationship between the change in Gibb's free energy and the emf of an electrochemical cell is given by:

\[\Delta G = -nFE \]

\[\Delta G^\circ = -nEF^\circ \]
The Nernst Equation

\[E_{\text{cell}} = E^0_{\text{cell}} - \frac{RT}{nF}\ln Q \]
FREE ENERGY

\[\text{Mg} + \text{H}_2\text{O}(l) + \frac{1}{2}\text{O}_2(g) = \text{Mg(OH)}_2 (S); \Delta G^\circ = -420,600 \text{ cal} \]

\[\text{Cu} + \text{H}_2\text{O}(l) + \frac{1}{2}\text{O}_2(g) = \text{Cu(OH)}_2(S); \Delta G^\circ = -28,600 \text{ cal} \]

\[\text{Au} + \frac{3}{2}\text{H}_2\text{O} + \frac{3}{4}\text{O}_2(g) = \text{Au(OH)}_3(S); \Delta G^\circ = +15.700 \text{cal} \]
The Electromotive Series or emf series is an orderly arrangement of the standard Electrode Potentials of all metals.

electrode potential

The **electrical potential** difference between an **electrode** and a **reference electrode**. We cannot measure the **absolute potential** of an electrode; therefore, the electrode potential must always be referred to an "arbitrary zero point", defined by the potential of the reference electrode. Consequently, it is very important always to note the type of reference electrode used in the measurement of the electrode potential. Not to be confused with **electrochemical potential**.
Standard Electromotive Force Potentials

Cathodic Reactions
- \(\text{Au}^{3+} + 3e^- \rightarrow \text{Au} \)
- \(\text{O}_2 + 4\text{H}^+ + 4e^- \rightarrow 2\text{H}_2\text{O} \)
- \(\text{Pt}^{2+} + 2e^- \rightarrow \text{Pt} \)
- \(\text{NO}_3^- + 4\text{H}^+ + 3e^- \rightarrow \text{NO} + 2\text{H}_2\text{O} \)
- \(\text{Ag}^+ + e^- \rightarrow \text{Ag} \)
- \(\text{O}_2 + 2\text{H}_2\text{O} + 4e^- \rightarrow 4\text{OH}^- \)
- \(\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \)
- \(2\text{H}^+ + 2e^- \rightarrow \text{H}_2 \)
- \(\text{Pb}^{2+} + 2e^- \rightarrow \text{Pb} \)
- \(\text{Sn}^{2+} + 2e^- \rightarrow \text{Sn} \)
- \(\text{Ni}^{2+} + 2e^- \rightarrow \text{Ni} \)
- \(\text{Co}^{2+} + 2e^- \rightarrow \text{Co} \)
- \(\text{Cd}^{2+} + 2e^- \rightarrow \text{Cd} \)
- \(\text{Fe}^{2+} + 2e^- \rightarrow \text{Fe} \)
- \(\text{Cr}^{3+} + 3e^- \rightarrow \text{Cr} \)
- \(\text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \)
- \(2\text{H}_2\text{O} + 2e^- \rightarrow \text{H}_2 + 2\text{OH}^- \)
- \(\text{Al}^{3+} + 3e^- \rightarrow \text{Al} \)
- \(\text{Mg}^{2+} + 2e^- \rightarrow \text{Mg} \)
- \(\text{Na}^+ + e^- \rightarrow \text{Na} \)
- \(\text{K}^+ + e^- \rightarrow \text{K} \)

Standard Potential, \(e^o \) (volts vs. SHE)
- +1.498 (Most Noble)
- +1.229 (in acidic solution)
- +1.118
- +0.957
- +0.799
- +0.401 (in neutral or basic solution)
- +0.337
- 0.000
- -0.126
- -0.138
- -0.250
- -0.277
- -0.403
- -0.447
- -0.744
- -0.762
- -0.828 (pH = 14)
- -1.662
- -2.372
- -2.71
- -2.931 (Most Active)
Applications of the Series

1. Displacement of metal: One metal will displace another above it in the series.
2. Displacement of hydrogen.
4. Electrolysis.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Potential</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>2.90</td>
<td>'Base or 'Anodic' End</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.87</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Bismuth</td>
<td>-0.23</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>-0.80</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>-0.80</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>1.50</td>
<td>'Noble' or 'Cathodic' End</td>
</tr>
</tbody>
</table>
Limitations of the Series

1. Only pure metal are listed in emf series, because it is not possible to establish a reversible potential for alloys containing two or more reactive components. But in most engineering applications the galvanic couple usually has one or more alloys.

2. The emf series has limited utility even in predict galvanic corrosion behavior of pure metals.

3. The emf series takes no account of the effect of surface films which may form on metals under a variety of conditions.

4. The emf series takes no account of the effect of pH.

5. Effect of temperature has not been considered in the emf series.
Galvanic series of metals and alloys

1) To overcome some of limitations of the emf series the so-called galvanic series can be used.

2) This series is an arrangement of metals and alloys in accordance with their actual measured potentials in a given environment.

3) The galvanic series of metals in contact with sea water is given.
The following is the galvanic series for stagnant (that is, low oxygen content) seawater. The order may change in different environments.

- Graphite
- Palladium
- Platinum
- Gold
- Silver
- Titanium
- Tantalum
- Chromium plating
- Nickel (passive)
- Copper
- Nickel (active)
- Cast iron
- Steel
- Lead
- Tin
- Indium
- Aluminum
- Uranium (pure)
- Cadmium
- Beryllium
- Zinc plating (see galvanization)
- Magnesium
- Stainless steel 316 (passive)
- Stainless Steel 304 (passive)
- Silicon bronze
- Stainless Steel 316 (active)
- Monel 400
- Phosphor bronze
- Admiralty brass
- Cupronickel
- Molybdenum
- Red brass
- Brass plating
- Yellow brass
- Naval brass 464
- Uranium 8% Mo
- Niobium 1% Zr
- Tungsten
- Stainless Steel 304 (active)
Galvanic series (most noble at top)

- Magnesium
- Mg alloy AZ-31B
- Mg alloy HK-31A
- Zinc (hot-dip, die cast, or plated)
- Beryllium (hot pressed)
- Al 7072 clad on 7075
- Al 2014-T3
- Al 1160-H14
- Al 7079-T6
- Cadmium (plated)
- Uranium
- Al 218 (die cast)
- Al 5052-0
- Al 5052-H12
- Al 5456-0, H353
- Al 5052-H32
- Al 1100-0
- Al 3003-H25
- Al 6061-T6
- Al A360 (die cast)
- Al 7075-T6
- Al 6061-0
Applications of Galvanic Series

1) Metals and alloys at the top of the series, i.e., at the noble end are corroded least, while metals and alloys at the bottom, i.e., at the active end are corroded to the maximum extent.

2) The further apart metal and alloys are in the series, the greater is the potential generated. Therefore, metals and alloys which are further apart in the series should not be connected together.

3) When metals and alloys within the same group are coupled together there is little danger of corrosion.
Limitations of Galvanic Series

1) In case of EMF series only one series exists but there can be several galvanic series because of differing tendencies of various environments to form surface films.

2) Galvanic Series like EMF series cannot be used to predict the effect of a change in solution pH on corrosion tendency.
To overcome some of limitations of the emf and galvanic series a system of showing the effect of both potential and pH has been evolved by Pourbaix in the form of E/pH digrams or Potential/pH diagrams.
Extended Thermodynamics – E/pH Diagrams

The diagram illustrates the electrochemical potential (E_H) versus pH for iron (Fe) in different oxygen and hydrogen partial pressures (P_{O_2} and P_{H_2}) conditions. The diagram shows the stability regions for various iron species:

- Fe (s): Iron metal
- Fe^{2+}: Ferrous ion
- Fe^{3+}: Ferric ion
- $Fe(OH)_2^+$: Ferric hydroxide
- $Fe(OH)_3(s)$: Ferric hydroxide precipitate

The shaded area indicates the region of passivity, and the hatched area represents the corrosion region.
The diagram consists of three types of straight lines each represent an equilibrium state.

1. **Lines Horizontal or Lines Parallel to pH Axis.**
2. **Vertical Lines or Lines Parallel to Potential Axis.**
3. **The Sloping Lines.**
The horizontal, vertical and sloping lines in the diagram form the following three types of regions or domains.

1. Immunity domain.

2. Passive domain.

3. Corrosion domain.
These diagrams are used for predicting:

1) Spontaneous direction of reaction.
2) Stability and composition of corrosion products.
3) Environmental changes which will prevent or reduce corrosive attack.
According to E/pH diagram, following methods can be used to reduce corrosion:

1) By lowering the electrode potential down into the region of immunity, e.g., by cathodic protection.

2) By raising the electrode potential up into region of passivity, e.g., by anodic protection.

3) By raising the pH or alkalinity of solution so that a passive film is formed.
Limitation of E/pH Diagrams:

1) These diagrams give no information on the corrosion rate, since they are based on thermodynamic and not on kinetic data.
2) The effect of impurities in solution is difficult to consider.
3) The effect of alloy element has not been considered.
4) Generally the diagrams are drawn for room temperature conditions.
Thank You